مقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص همزمان بیماری فشارخون و دیابت
Authors
abstract
زمینه و هدف : دیابت و فشار خون از جمله بیماریهای غیر واگیر هستند که شیوع آنها برای مسئولان بهداشتی کشور بسیار مهم می باشند. هدف این مطالعه مقایسه مدل رگرسیون لجستیک ( lr ) دو متغیره با شبکه های عصبی مصنوعی ( artificial neural networks=ann ) در پیش بینی همزمان رخداد بیماری فشارخون ودیابت میباشد. روش کار : این مطالعه تحلیلی- مقطعی در سال 1392-1391 در تهران با نمونه ای 12000 نفر از بالغین انجام شد. پرسشنامه طرح شامل گزینه هایی درباره فشار خون و دیابت و عوامل خطر این بیماری ها بود. یک مدل ann پرسپترون با دو لایه پنهان با به کارگیری نرم افزار matlab بر داده ها برازش داده شد. متغیرهای مطالعه سابقه دیابت و فشار خون، جنسیت، نوع روغن مصرفی، فعالیت بدنی، سابقه فامیلی، سن، سیگار کشیدن وچاقی بودند. برای مدل سازی ابتلای توام به بیماریها، از مدل lr توام در نرم افزار sas استفاده شد. برای بررسی دقت پیش بینی های حاصل از مدل lr و ann در ابتلای توام بیماری ها از سطح زیر منحنی roc استفاده گردید. یافته ها : متغیرهای جنس، نوع روغن مصرفی، فعالیت بدنی، سابقه فامیلی، سن، سیگاری غیرفعال وچاقی وارد مدل lr دو متغیره و ann شدند. برای مدل lr نسبت بخت های متغیرهای فوق به ترتیب14/1، 58/0، 8/1، 32/1، 36/0، 76/0 و 47/0 بدست آمد. بنابراین بخت ابتلای توأم به بیماری ها در زنان (14/1)، عدم فعالیت بدنی (8/1) و دارای سابقه فامیلی (32/1) نسبت به سایر گروه ها بیشتر است. سطح زیر منحنی roc برای مدل lr دو متغیره و ann به ترتیب 78/0 (039/0= p ) و 86/0 (046/0= p ) حاصل شد. نتیجه گیری : با توجه به نتایج و مقایسه دقت پیش بینی روش های فوق، به کارگیری ann نسبت به مدل lr دو متغیره برای تشخیص هم زمان بیماری دیابت و فشار خون دقت بالاتری دارد.
similar resources
مقایسه شبکه عصبی مصنوعی و رگرسیون لجستیک در پیش بینیپاسخ های دو حالتی مطالعات پزشکی
چکیده زمینه و هدف: رگرسیون لجستیک یک مدل عمومی برای بررسی رابطه بین متغیرهای مستقل و پاسخ های دوحالتی است. یکی از مدل های انعطاف پذیر که به طور جایگزین می تواند مورد استفاده قرار گیرد، مدل شبکه عصبی مصنوعی است. این مطالعه با هدف مقایسه ی قدرت پیش بینی پاسخ های دوحالتی داده های پزشکی، با مدل شبکه عصبی مصنوعی و رگرسیون لجستیک انجام شد. مواد و روش کار: برای انجام این پژوهش، از داده های 639 بیمار م...
full textمقایسه عملکرد شبکه عصبی مصنوعی و رگرسیون لجستیک در تحلیل تشخیص شاخصq توبین
شاخص توبین یکی از شاخص های مهم در دنیای سرمایه گذاری است که بعنوان معیاری برای ارزیابی عملکرد شرکت ها جهت تصمیم گیری برای سرمایه گذاری های صحیح به کار می رود. اما در دقت نتایج مبتنی بر این شاخص، ابهاماتی وجود دارد که پژوهشگران را بر آن داشته است تا به دنبال برآورد این شاخص از روی دیگر شاخص های مالی باشند. اما شاخص توبین یک شاخص پویاست و به علت مبتنی بودن بر قیمت بازار، ممکن است در لحظه مقدار آن...
full textمقایسه شبکه عصبی مصنوعی و رگرسیون لجستیک در پیشبینیپاسخهای دو حالتی مطالعات پزشکی
چکیده زمینه و هدف: رگرسیون لجستیک یک مدل عمومی برای بررسی رابطه بین متغیرهای مستقل و پاسخهای دوحالتی است. یکی از مدلهای انعطافپذیر که به طور جایگزین میتواند مورد استفاده قرار گیرد، مدل شبکه عصبی مصنوعی است. این مطالعه با هدف مقایسهی قدرت پیشبینی پاسخهای دوحالتی دادههای پزشکی، با مدل شبکه عصبی مصنوعی و رگرسیون لجستیک انجام شد. مواد و روش کار: برای انجام این پژوهش، از دادههای 639 بیمار م...
full textکارایی شبکه های عصبی، رگرسیون لجستیک و تحلیل تمایزی در پیش بینی نکول
مدل های آماری مختلفی برای پیش بینی و طبقه بندی در علوم وجود دارد. روش های آماری و اقتصادسنجی نظیر رگرسیون، تحلیل تمایزی، سری های زمانی، رده بندی و دیگر روش ها، بر اساس متغیرها و اطلاعات موجود برای پیش بینی و طبقه بندی یک موضوع خاص به کار می روند. مدل های آماری متأثر از مفروضات و محدودیت های زیادی هستند، بدین لحاظ اخیرا شبکه های عصبی به عنوان شیوه ی نوین پیش بینی به دلیل عدم نیاز به ...
full textمقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی
Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic...
full textMy Resources
Save resource for easier access later
Journal title:
مجله علوم پزشکی رازیجلد ۲۱، شماره ۱۲۳، صفحات ۵۴-۶۱
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023